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S P E C I F I C  F E A T U R E S  OF T H E  N O N L I N E A R L Y  E L A S T I C  B E H A V I O R  

OF C Y L I N D R I C A L  C O M P R E S S I B L E  B O D I E S  IN T O R S I O N  

T. V.  Gavr i lyachenko and M. I. Karyakin  1 UDC 539.3 

The torsion problem of a cylinder with a circular transverse cross section twisted by end mo- 
ments that are equal in magnitude and opposite in direction is considered for various models 
of nonlinearly elastic compressible media. The problem is solved by the semi-inverse method 
of elasticity theory. The Poynting effect, which consists of variation in the length of a shaft in 
torsion, is treated qualitatively and quantitatively. The results of the numerical and asymptotic 
(only teT"ms that are quadratic relative to the displacement gradient are conserved) solutions 
for various models of the nonlinearly elastic behavior of materials are compared. An analysis 
of the ~sults shows that in some cases, the quasilinear model is not applicable for studying the 
behavior of nonlinearly elastic compressible media. 

Tile phenomenon of variation of tile length of an elastic cylinder in torsion was discovered experio 
mentally and described by Poynting in the early twentieth century. Quantitatively, this effect is manifested 
weakly: when the torsion angles are approximately 15-20 ~ per unit length, the relative elongation of tile 
sample does not exceed 0.01. However, in manufacturing precision measuring devices and in determining 
experimentally the elastic constants of materials, the influence of the Poynting effect should be taken into 
account. 

The phenomenon discovered by Poynting can be explained by means of the nonlinear torsion problem. 
The torsion problem of a compressible (changing its volume upon deformation) cylinder with allowance 

for axial elongation was treated both in known books dealing with continuum mechanics [1, 2] and in recent 
studies. In particular, M. Chen and Z. Chen [3] analyzed this problem with tim use of asymptotic methods, 
and Koczyk and Weese [4] solved it by the finite-element method; the torsion problem of circular cylinders 
w~:~s analyzed numerically by Zubov [5] and Gavrilyachenko [6]. However, most of these studies considered 
concrete models of an elastic material. 

The goal of the present study is to estimate quantitatively and qualitatively the Poynting effect with 
tim use of various governing relations for isotropic compressible materials and compare the behavior of their 
models. 

Governing  Relat ions.  We introduce the reference (unstrained) and real (strained) configurations of 
the medium. The radius vector of a material point in the real configuration is denoted by R. The second-rank 
tensor C, which is called a strain gradient, is specified by the relation C -- grad R, where grad is the gradient 
operator in the basis of the reference configuration. 

The Piola stress tensor defined in the reference configuration is expressed in terms of the "true" stress 
tensor T as follows [1]: 

D = ( c t ) - lTde t  C. 
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Here the superscript "t" denotes transposition. 

The  model of an elastic material is characterized by the form of the funct ion of specific potential  s train 
energy W. For an isotropic material, the latter can be defined [1] as a funct ion of the basic invariants Ik of 
the Cauchy--Green strain measure G = C C  t. 

The governing relations for an isotropic material  tha t  possesses the potent ia l  W have the form 

D = O W  = 2 0 W  
OC -5-5  C [ W  = W ( I , ,  r2 , /3 ) . ]  (1) 

F o r m u l a t i o n  o f  t h e  P r o b l e m  a n d  t h e  M e t h o d  o f  I t s  S o l u t i o n s .  Let  an elastic cylinder (shaft) 
with a circular transverse cross section be twisted by the end moments/%'/o tha t  are equal in magnitude and 
opposite in direction. Its length 1 before deformation is assumed to be quite  large, and the side surface is 
assumed to be free from loading. The external radius and the radius of a hollow are denoted by r l  and r0, 
respectively. 

We assume that  after deformation the cylinder becomes a cylinder and,  hence, the reference and real 
configurations can be conveniently considered in a cylindrical coordinate system. The cylindrical coordinates 
of a material particle in the reference and real configurations are denoted by  r,  ~, and z and R, (I), and 
Z, respectively, and the appropriate orthonormalized-basis vector by er ,  e~, and ez and eR, er  and e z ,  

respectively. 

The  torsion of a cylindrical shaft is described by the following t ransformat ion of the reference config- 
urat ion to a real one: 

R = P ( r ) ,  ( I ) = ~ + ~ z ,  Z = ~ , z ,  r 0 ~<r<~r l ,  0~<z~<l .  (2) 

Here P ( r )  is a desired function that should be determined, r is the torsion angle referred to unit length, and 
7 is the elongation of the shaft during torsion. The strain gradient, the Cauchy-Green  strain measure, and 
its basic invariants are determined from this transformation. After that,  the Piola stress tensor is expressed 
from the equation of state (1). 

We assume that  tim stress state is created by surface forces, whereas the effect of mass forces is 
negligible. Then, the equil ibriumequation expressed in terms of the Piola stress tensor takes the form 

div D = 0. (3) 

Here div is the divergence operator in the coordinates of the reference configuration. 
In the reference configuration, in the absence of loading on a part of the body surface with the normal 

n ,  the relation n -  D = 0 holds. With allowance for this, the boundary condit ion on tim side surface with the 
unit normal er is written in the form 

e r .  D = 0. (4) 

The expressions for the mxial force Q and the torsional moment M tha t  act in the transverse cross 

section of the shaft being twisted have the form 

s* s s* s 

where S* and S are the cross-sectional areas in the real and reference configurations, respectively, a z  = 
e z  �9 T .  e z  and 7"~z = e~, �9 T .  e z  are the components of the Cauchy stress tensor,  and D ~ z  --  e v �9 D �9 e z  and 
D z z  = ez  �9 D �9 e z  are the components of the Piola stress tensor. 

Since the but-ends of the shaft considered are not fixed, an mxial force does not appear during torsion; 
therefore, with Eq. (5) taken into account, the boundary  conditions at the but-ends  are written in tim form 

s* s s* s 

The second-order nonlinear boundary-value equilibrium problem (3), (4) relative to the function P ( r )  

is solved numerically or analytically. 
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After the function P ( r )  is determined, an expression for the axial force that  depends on two parameters 
in this case, namely, the relative elongation of the shaft 7 and the torsion angle per unit length ,~b, is 

constructed.  
To assess the Poyting effect, it suffices to choose the values of 7 at which the axial force vanishes for 

given values of '~b by means of the first condition in (6). This scheme of constructing the solution is called the 
semi-inverse [1] method of elasticity theory. This method is quite efficient but is applicable to a narrow class 
of problems tha t  is limited to a set of simple geometrical transformations of conic bodies. 

The  semi-inverse method is t reated in the literature in detail. W'e expound this method in detail 
here to show the high degree of its algorithmization. Derivation of the boundary'-value problem for a real 
energy funct ion W is a chain of cumbersome transformations. However, algorithmization makes the use of 
tim means of  computer algebra effective in similar problems. For particular models of nonlinearly elastic 
media, the  boundary-value problems given below were generated automatically and analyzed numerically by 
a program developed by the authors in Maple V medium for Windows [6]. 

Below, we consider a number of models of nonlinearly elastic compressible media. 
Two-Constant, Physically Linear Model. For this model, the function of specific potential  strain energy 

is given by the expression 

(A ) A + 2 .  3 A + 2 #  r 3 (3A + 2 . ) ,  W = ~ + ,  j l  2 - Zgj2 -- ~ 12 ~ "1 Jr 

where jk are the basic invariants of the Cauchy-Green strain tensor K = (1/2)(G - E)  (E  is a unit tensor) 
and A and , are the Lam6 constants. Hereafter, Ik = Ik(G) .  The boundary-value equilibrium problem has 

the form 

p , , _  ~ ( p 3 ( ( g ' 2 r l .  - f - \  r 2 1)2 y -~-/-'~2(7"2~2 -- 2) -- ~;~) -- p'3r(1 - u) - P'2Pu(~b2r2 - 1) 

V = P2u(r2'~ b2 - 1) + 3p'2r2(1 - u) + r2(u7 2 - u - 1), 

p ' r2 (u7  2 - u - 1) + p'3r2(1 - u) + P 'P2u(1  + r2v '2) = O, r = to, r i ,  

where u = A/(2(A + , ) ) .  
Murnaghan's Five-Constant Model [1]. For this model, the function of specific potential  strain energy is 

specified in the form 

( ) n) 1 9 n 1 (A + 2 ,  - 3l - 2m)I~ + ~ - 2 ,  + 3 m  - -~ 12 l ~V=~  - 3 A - 2 . + ~ / + ~  I i + ~  

~4 (3.\ + 2 . )  - 
n 3 9 

_ m IiI2 + (l + 2m)I  3 + ~ (I3 - I) + ~ ~ l, 
4 

where l, m, and n are the Murnaghan constants. For l = m = n = 0, this model becomes a model of 
a physically linear material. The values of the Lan16 and Murnaghan constants are given in [1] for many 

materials. 
The  boundary-value equilibrium problem for this model is onlitted here because of its cumbersome 

f o rm .  

Blatz and Ko's Three-Constant Model [1]. For this model, the function of specific potential  strain energy 

is given by the expression 

IV=~"(1-3) +~i (If-l)-3 +~ ll+-(/~-a-l)-3a " 

Here a , /3 ,  a n d ,  are constants of the materials. Upon small deformations, this model becomes a model of a 

linearly elastic material with Lam6 constants A = 2#a  and , ,  

379 



7 
1 . 0 0 '  

0.99 

0.98 

0.97 

0 

a 

"\ 
0.2 0:4 r 

1.04 

1.02 

1.00 

b s" 

,,6/,/tZ 

o 0:2 0:4 o;, 
)t C 

1.03 - 

.$/~' 

1.02 - ,,//t//~/" 

1.01 

1.00 
o o'os o'.1o o:15 ~r, 

Fig. l 
M /(/~r}) 

0.3 

0.2 

0.1 

o dos o'1o ~;, 
Fig. 2 

The following simplified variant of tile model is obtained for a = 1/2 and/3 = 0: 

, (12 5). (v) 
w = ~ ~,,T~ + 2  

For the potential (7), the boundary-value equilibrium problem can be written in the form 

p,, 1 ( P '  r 2 p,4 ) r 
= 3 \ r  ~ T g  ' P = p,3---'~' r = to, r1. 

where W = W ( j l , j 2 , j 3 ) ,  W,k = OW/Ojk,  and W, ks = 02W/Ojk  Ojs. 
It has the analytical solution 

( Jp )2/5. 
P(r )  = 7-1/4r,  7 = 1 -4- -~  ,~2 

Hereafter, S is the cross-sectional area of the shaft before deformation and Jp is the polar moment of this 
cross section. 

For a hypothetical (a = 1/2 and f3 = 1) variant of Blatz and Ko's model [1], the function of specific 
potential energy takes the form 

1 { 1 _ 5 \ , )  + 2 ~  W = 5U~I, V~3 
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and tile boundary-value equilibrium problem is represented in the form 
P" ~2p3pt3r2., f + 2PP, r 2 + p3p,3.,/_ 2p,2r3 _ p,4p2r~ / P r 

- -  r ~ r0,  r 1. r2p(2r + p,3p./) ' p,3~/' 

One can also construct an approximate (only terms that are quadratic relative to the displacement 
gradient in the governing relations are conserved) solution of the problem considered that allows one to 
discover the Poynting effect. Here the general expression for the relative elongation of the cylinder at small 
torsion angles has the form 

A l  -2}V,11I~,2  -[- I/V,3W,11 -I- W31~V,2 -}- W,121~V,2 Jp r  (8) 
l -- q' I ~ W,2(31'V,11 + 21J/,2) 4---S 

Figure 1 shows the dependences 3'(r for each model mentioned above. Calculations were performed 
for the ratio between the internal and external radii of the cylinder ro/rl = 0.01. The solid and dashed 
curves refer to the numerical results and the calculation results obtained by formula (8), respectively. Figure 
la  corresponds to the two-constant model for v = 0.25 (curves 1) and 0.49 (curves 2). Figure lb corresponds 
to Blatz and Ko's three-constant model (curves 1 and 2 refer to the simplified and hypothetical variants, 
respectively). Figure le corresponds to Murnaghan's five-constant model (curves 1 and 2 refer to copper and 
35KhGSA steel, respectively). The values of the Lain6 and Murnaghan constants are taken from [1]. 

Figure 2 shows the dependences of the torsional moment on the magnitude of the torsion angle in the 
absence of elongation that were obtained numerically. Curve 1 corresponds to the hypothetical variant of 
Blatz and Ko's model, and curve 2 to Murnaghan's model for 35KhGSA steel. The values of the Lam6 and 
Murnaghan constants for the latter are taken from ~1]. The deviation of this dependence from the linear 
one is negligible for not too large ~rt for all the models considered except for the five-constant model. For 
example, for a 35KhGSA model of diameter 2 cm and length 10 cm, this deviation is approximately 10% if 
the but-ends are at an angle of 90 ~ relative to each other. 

The asymptotic relation (8) agrees with the results of numerical calculations and shows that the 
physically linear model allows one to make allowance for some specific features of the nonlinear theory 
(Poynting effect); however, in studying the defornmtion of elastic compressible media one should not restrict 
oneself only to its consideration. Indeed, for Murnaghan's model, expression (8) depends on four rather than 
two constants: 

Al 4/~(2~ + A) + nA + 4mt~ Jp ~2. 
- -  = 7 - 1 ~  

l 2#(3A + 2#) 4S 

This explains the qualitative difference in the behavior of the five-constant model (see Fig. lc) and its 
two-constant approximation (see Fig. la). 

The authors are grateful to Professor L. M. Zubov for a fruitful discussion of the study. 
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